BASIS
BEWEGING
KRACHT
ELEKTRICITEIT
antwoorden
antwoorden
antwoorden
antwoorden
videolessen
videolessen
videolessen
videolessen
oefentoets
oefentoets
oefentoets
oefentoets
MECHANICA
ENERGIE
MOMENT
MODELLEREN
videolessen
videolessen
videolessen
videolessen
antwoorden
antwoorden
antwoorden
antwoorden
oefentoets
oefentoets
oefentoets
oefentoets
RADIOACTIVITEIT
(NIEUW)
...
...
...

Hoofdstuk 6
Energie

§1 Soorten energie
§2 Energiebehoud
§3 Chemische energie



§1     Soorten energie

In dit hoofdstuk gaan we leren de beweging van voorwerpen te beschrijven met behulp van het begrip energie. In de eerste paragraaf introduceren we een aantal soorten energie en de bijbehorende formules en gaan we het hebben over energieomzettingen.

Als we een stukje willen rennen, dan hebben we daar energie voor nodig. Als een vliegtuig opstijgt, dan is daar energie voor nodig. Als een lamp licht geeft, dan verbruikt deze lamp energie. Energie is overal om ons heen. Er zijn verschillende soorten energie. Als een voorwerp beweegt, dan zeggen we dat het voorwerp kinetische energie (Ekin) heeft. De hoeveelheid kinetische energie die een bewegend voorwerp heeft, kunnen we berekenen met de volgende formule:

$$ E_{kin} = \frac{1}{2}mv^2 $$

Kinetische energie (Ekin)

joule (J)

Massa (m)

kilogram (kg)

Snelheid (v)

meter per seconde (m/s)

 

Voor alle formules in deze paragraaf geldt dat je de grootheden moet invullen in SI-eenheden. De massa in deze formule wil je altijd in kilogram geven en de snelheid in meter per seconde. De SI-eenheid van de energie is de joule.

         Voorbeeld

 

Vraag:

Een leerling fietst met een bewegingsenergie van 1,0 × 104 J. De leerling heeft samen met de fiets een massa van 90 kg. Bereken de snelheid waarmee de leerling fietst.

Antwoord:

Eerst noteren we de gegevens:

Ekin = 1,0 × 104 J
m = 90 kg

We gebruiken de formule voor de bewegingsenergie:

$$ E_{kin} = \frac{1}{2}mv^2 $$

Nu vullen we de gegevens zo veel mogelijk in:

$$ 1,0 \times 10^4 = \frac{1}{2} \times 90 \times v^2 $$

Door 1/2 × 90 uit te rekenen vinden we:

$$ 1,0 \times 10^4 = 45 \times v^2 $$

Dit schrijven we om tot:

$$ v^2 = \frac{1,0 \times 10^4}{45} = 222,22 $$

Door aan beide kanten de wortel te trekken vinden we de snelheid:

$$ v = \sqrt{222,22} = 14,9 \text{ m/s} $$

 

Ook heeft een voorwerp energie als het de potentie heeft zichzelf of een ander voorwerp in beweging te brengen. Een voorbeeld is de zwaarte-energie. Als je een zwaar voorwerp optilt, dan voel je dat het weer naar beneden wil. Dit is de zwaarte-energie. Elk voorwerp dat zich op een bepaalde hoogte bevindt, heeft dus zwaarte-energie. De hoeveelheid zwaarte-energie berekenen we als volgt:

$$ E_z = mgh $$

Zwaarte-energie (Ez)

joule (J)

Massa (m)

kilogram (kg)

Valversnelling (g)

meter per seconde per seconde (m/s2)

Hoogte (h)

meter (m)

 

         EXPERIMENT
In het rechter filmpje demonsteren we het effect van het kwadraat in de formule voor de kinetische energie (1/2mv2). We schieten een balletje verticaal af met twee keer zoveel snelheid. Volgens de formule verwacht je dat het balletje een vier keer zo grote hoogte bereikt.
DEMO-VIDEO:
Kinetische energie

Een ander voorbeeld is de veerenergie of de elastische energie. Als je een veer of een elastiek uitrekt, dan voel je dat deze voorwerpen terug willen naam hun evenwichtspositie. We zeggen dan dat deze voorwerpen veerenergie of elastische energie bevatten.

Chemische energie (Ech) is de energie die is opgeslagen in stoffen. Een bekend voorbeeld is de energie die in brandstoffen als benzine is opgeslagen. Chemische energie zit ook in bijvoorbeeld voedsel en batterijen.

Daarnaast hebben we ook elektrische energie (Eelek) en stralingsenergie (Estraling). Met stralingsenergie bedoelen we de energie in licht. We voelen deze energie bijvoorbeeld als we in de zon lopen.

Door wrijvingskracht ontstaat de energiesoort warmte (Q). Dat wrijving voor warmte zorgt kan je o.a. ervaren door je handen hard tegen elkaar aan te wrijven. We zien hetzelfde effect in de onderstaande foto die is gemaakt met een infraroodcamera. We zien hier dat de grond is opgewarmd door het remmen van een fiets.

         EXPERIMENT
In het rechter filmpje zien we nog een voorbeeld van het ontstaan van warmte door wrijving:
DEMO-VIDEO:
Warmte

De warmte berekenen we als volgt:

$$ Q = F_w \;s $$

Warmte (Q)

joule (J)

Wrijvingskracht (Fw)

newton (N)

Afstand (s)

meter (m)

 

De verschillende soorten energie kunnen in elkaar worden omgezet. Neem bijvoorbeeld de verbranding van voedsel in het lichaam. Hier wordt de chemische energie uit voedsel omgezet in kinetische energie en warmte. Deze energieomzetting schrijven we als volgt op:

$$ E_{ch} \rightarrow E_{kin} + Q $$

Nog een voorbeeld. Als we een lampje aansluiten op een batterij, dan wordt in de batterij chemische energie omgezet in elektrische energie en warmte. In de lamp wordt deze elektrische energie op zijn beurt weer omgezet in stralingsenergie en warmte. Deze energieomzettingen schrijven we als volgt op:

$$ E_{ch} \rightarrow E_{elek} + Q $$ $$ E_{elek} \rightarrow E_{straling} + Q $$
INSTRUCTIE:
Soorten energie

         Leerdoelen:
  • Zorg dat je energieomzettingen kan beschrijven met o.a. kinetische energie, zwaarte-energie, warmte, veerenergie, elastische energie, chemische energie, elektrische energie en stralingsenergie.
  • Zorg dat je kan rekenen met kinetische energie (Ekin = 1/2mv2), de zwaarte-energie (Ez = mgh) en de warmte (Q = Fws). Noteer bij deze formules alle waarden in SI-eenheden.

         Opdrachten
  1. (4p) Hieronder zien we een luchtballon, zonnecellen, een föhn en een dynamo afgebeeld. Beschrijf de energieomzettingen die hier plaatsvinden.


    (Afbeelding: Pujanak; PD / Bidgee; CC BY-SA 3.0 / Batholith; PD / Celeda; CC BY-SA 4.0)

  2. (2p) In welke twee energiesoorten wordt de chemische energie in voedsel omgezet?
  3. (1p) Een kogel valt van de toren van Pisa. Welke energieomzetting vindt er tijdens het vallen plaats?
  4. (2p) Een bal wordt verticaal afgeschoten met behulp van een veer. Welke energieomzettingen vinden plaats vanaf het begin van de beweging totdat de bal zijn hoogste punt bereikt heeft?
  5. (1p) Welke energiesoort is er in een accu opgeslagen?
  6. (2p) Een leerling maakt met een batterij en een koperdraad een gesloten stroomkring. De draad wordt hierdoor erg warm. Geef de energieomzetting in de batterij en de energie omzetting in de draad.
  7. (1p) Welke energie-omzetting vindt plaats bij het opladen van een accu?
  8. (2p) Een sporter met een massa van 60 kg komt bij hoogspringen met een snelheid van 9,0 m/s op een mat. Bereken de kinetische energie.
  9. (2p) Om koeien automatisch van water te voorzien wordt slootwater 2,0 meter omhoog gepompt richting een waterbak. Bereken de minimale hoeveelheid energie die nodig is om 80 kg water in de bak te pompen.
    (Bron: Examen VMBO-T, 2023-2)
  10. (3p) Een metalen balletje van 50 gram wordt weggeschoten met een snelheid van 5,0 m/s. Bereken de kinetische energie waarmee het balletje wordt weggeschoten.
  11. (3p) Een auto heeft een massa van 3,0 × 104 kg en rijdt met een constante snelheid van 100 km/h. Bereken de kinetische energie van de auto.
  12. (3p) Een appel met een massa van 120 gram valt uit een boom van een hoogte van 3,0 meter. Bereken de zwaarte-energie aan het begin en aan het eind van de beweging.
  13. (2p) Een appel valt uit een boom van een hoogte van 3,0 meter. De warmte die ontstaat door de luchtwrijving tijdens de val is 0,30 J. Bereken de gemiddelde wrijvingskracht die de appel ondervonden heeft.
  14. De cheeta is het snelste landdier ter wereld. Een cheeta met een massa van 45 kg versnelt vanuit stilstand.
    1. (2p) Bij het wegrennen is sprake van een energieomzetting. Noteer de energiesoort(en) voor en na de energieomzetting.
    2. (2p) Bereken de kinetische energie van de cheeta bij een snelheid van 30 m/s.

    (Bron: Examen VMBO-T, 2022-1)
  15. (3p) Een zware plaat met een massa van 1800 kg wordt opgetild met een hijskraan. Daarbij neemt de zwaarte-energie met 432 kJ toe. Bereken de hoogte waarover de plaat is opgetild.
    (Bron: Examen VMBO-T, 2022-1)
  16. (2p) Met een heftruck wordt een pakket met een massa van 600 kg opgetild. Tijdens het optillen is de zwaarte-energie van het pakket toegenomen met 14 000 J. Bereken over welke hoogte het pakket is opgetild.
    (Bron: Examen VMBO-T, 2022-2)
  17. (2p) Een bowlingbal heeft een kinetische energie van 40 J en een massa van 5,0 kg. Bereken de snelheid van de bowlingbal.
  18. (2p) Een achtbaantrein versnelt bij een afdaling. De kinetische energie stijgt hierdoor van 200 kJ naar 800 kJ. Is de snelheid hierdoor twee keer of vier keer zo groot geworden? Leg je antwoord uit.
    (Bron: Examen VMBO-T, 2023-1)

 

§2     Energiebehoud

In deze paragraaf bouwen we voort op de soorten energie die we in de vorige paragraaf tegen zijn gekomen. We gaan het begrip energiebehoud gebruiken om met deze soorten energie te rekenen.

Zoals we hebben gelezen kunnen we energie omzetten van de ene naar de andere soort, maar de totale hoeveelheid energie blijft altijd gelijk. We noemen dit de wet van behoud van energie. In wiskundige termen kunnen we deze wet opschrijven als:

$$ E_{tot,b} = E_{tot,e} $$

Totale energie aan het begin (Etot,b)

joule (J)

Totale energie aan het eind (Etot,e)

joule (J)

 

         EXPERIMENT

In de onderstaande filmpjes wordt de wet van behoud van energie gedemonstreerd:

DEMO-VIDEO:
Energiebehoud
DEMO-VIDEO:
Energiebehoud II

In de onderstaande voorbeelden gaan we deze wet toepassen.

         Voorbeeld

 

Opdracht:

Een kanonskogel met onbekende massa wordt onder een willekeurige hoek afgeschoten van de top van een kasteel op een hoogte van 30 m. De beginsnelheid van de kogel is 20 m/s. Bereken de snelheid waarmee de kogel tegen de grond komt. We verwaarlozen de wrijvingskracht.

Antwoord:

Op het moment dat de kogel wordt afgeschoten heeft de kogel zowel kinetische energie als zwaarte-energie. Als de kogel neerkomt, is er geen zwaarte-energie meer. Er geldt dus:

$$ E_{tot,b} = E_{tot,e} $$ $$ E_{kin,b} + E_{z,b} = E_{kin,e} $$

Dit kunnen we uitschrijven tot:

$$ \frac{1}{2}mv_{b}^2 + mgh = \frac{1}{2}mv_{e}^2 $$

Alle termen in deze vergelijking bevatten een m, dus kunnen we deze wegdelen:

$$ \frac{1}{2}v_{b}^2 + gh = \frac{1}{2}v_{e}^2 $$

Laten we nu de gegevens die we gekregen hebben invullen:

$$ \frac{1}{2}\times 20^2 + 9,81 \times 30 = \frac{1}{2}v_{e}^2 $$

De linker zijde kunnen we nu versimpelen tot:

$$ 494,3 = \frac{1}{2}v_{e}^2 $$

De 1/2 aan de rechter zijde kunnen we wegkrijgen door beide kanten van de vergelijking met 2 te vermenigvuldigen:

$$ 988,6 = v_{e}^2 $$

Als we nu aan beide kanten de wortel trekken, dan vinden we de eindsnelheid:

$$ v_{e} = \sqrt{988,6} = 31 \text{ m/s} $$

Merk op hoe krachtig deze methode is! Met energiebehoud kunnen we de eindsnelheid van de kogel berekenen, zonder de massa van de kogel te weten of de hoek waaronder de kogel is afgeschoten.

 

Laten we nu een voorbeeld bespreken waarbij de wrijvingskracht wel een rol speelt:

         Voorbeeld

 

Opdracht:

Een bal met een massa van 1,0 kg wordt met een snelheid van 5 m/s tegen een helling opgerold. Op een hoogte van 10 cm staat de bal even stil. Op dit punt heeft de bal 1,5 meter afgelegd. Bereken de gemiddelde wrijvingskracht die werkt op de bal.

Antwoord:

Aan het begin heeft de bal kinetische energie, want de bal heeft aan het begin een snelheid. Op zijn hoogste punt heeft de bal geen kinetische energie meer, want de bal staat hier even stil. De bal heeft hier wel zwaarte-energie. Er geldt dus:

$$ E_{tot,b} = E_{tot,e} $$ $$ E_{kin,b} = E_{z,e} + Q $$

Dit kunnen we uitschrijven tot:

$$ \frac{1}{2}mv_b^2 = mgh + F_w \;s $$

Omdat de laatste term geen "m" bevat, kunnen we deze niet wegdelen. Nu vullen we de gegevens in:

$$ \frac{1}{2} 1,0 \times 5^2 = 1,0 \times 9,81 \times 0,10 + F_w \times 1,5 $$ $$ 12,5 = 0,981 + F_w \times 1,5 $$

Als we aan beide kanten 0,981 van de vergelijking afhalen, dan vinden we:

$$ 11,519 = F_w \times 1,5 $$

Hiermee kunnen we de wrijvingskracht uitrekenen:

$$ F_w = \frac{11,519}{1,5} = 7,7 \text{ N} $$

 

INSTRUCTIE:
Energiebehoud

         Leerdoelen:
  • Zorg dat je energiebehoudvergelijkingen kan opstellen met de formules voor de kinetische energie, de zwaarte-energie en de warmte. Zorg ook dat je deze vergelijkingen kan oplossen.
  • Zorg dat je weet dat je de massa kan wegstrepen als de massa in elke term van de vergelijking voorkomt
  • Zorg dat je weet dat je de warmte aan de rechterzijde van de energiebehoudvergelijking schrijft als wrijvingskrachten niet te verwaarlozen zijn.

         Opdrachten
  1. Beschrijf in de volgende situaties de energieomzetting:
    1. (1p) Een kogel wordt vanuit stilstand over een horizontaal oppervlak afgeschoten met behulp van een veer. De kogel verlaat de veer met een bepaalde snelheid. De wrijvingskracht is te verwaarlozen.
    2. (1p) Een bal rolt met een beginsnelheid een helling op. Na een tijdje behaalt de bal zijn hoogste punt. De wrijvingskracht mag worden verwaarloosd.
    3. (1p) Een bal wordt vanuit stilstand omhooggeschoten met behulp van drie veren. Na een bepaalde tijd bereikt de bal zijn hoogste punt.
    4. (1p) Een blok wordt boven een grote veer losgelaten. Door de zwaartekracht van het blok drukt de veer in. Op een gegeven moment is de veer maximaal ingedrukt. De wrijvingskracht is te verwaarlozen.
    5. (1p) Een bal wordt van een helling afgerold met een snelheid van 30 m/s. Even later is de snelheid toegenomen.
  2. (4p) Een baksteen valt van een hoogte van 10 meter naar beneden. De wrijvingskracht is te verwaarlozen. Bereken de snelheid waarmee de steen tegen de grond komt.
  3. (5p) In de onderstaande afbeelding zien we een persoon die een bungeejump maakt. Het bungeekoord heeft in zijn neutrale toestand een lengte van 15 meter. Maak met behulp van de lengte van de persoon een schatting van de elastische energie die op het laagste punt in het elastiek is opgeslagen.


    (Afbeelding: Andrzej19; CC BY 3.0-mod)

  4. (4p) Een bal met een massa van 350 gram rolt vanuit stilstand van een helling met een lengte van 10 meter en een hoogte van 6,4 m. De snelheid van de bal aan het eind van de helling is 10 m/s. Bereken de hoeveelheid energie die is omgezet in warmte.
  5. (4p) Een persoon heeft een slinger aan een statief gemonteerd. De slinger bestaat uit een koord met daaraan een massa. De massa wordt uit zijn evenwichtsstand getrokken, totdat de hoogte 5,0 cm is toegenomen (zie de onderstaande afbeelding). Bereken de maximum snelheid die de massa zal ondervinden bij het heen en weer slingeren. Je mag de wrijvingskracht verwaarlozen.

  6. (4p) Een persoon gooit een honkbal met een snelheid van 45 km/h weg. Hij laat de honkbal los op een hoogte van 1,80 meter. Bereken de snelheid waarmee de honkbal tegen de grond komt. Verwaarloos de wrijvingskracht.
  7. Hieronder zien we het (v,t)-diagram van een remmende motorfiets. De motorfiets met passagier heeft een totale massa van 270 kg.

    1. (4p) Laat met behulp van het diagram zien dat de warmte die tijdens het remmen ontstaan is gelijk is aan 4,1 × 104 J.
    2. (4p) Bereken de wrijvingskracht werkende op de motorfiets tijdens het remmen.
  8. (4p) In de onderstaande afbeelding is een deel van een achtbaan schematisch afgebeeld. Deze figuur is niet op schaal. Een karretje wordt eerst met een motor omhooggetrokken over pad AB tot een hoogte van 29 m. Het karretje daalt daarna met een verwaarloosbare beginsnelheid af van punt C naar punt D. Punt G bevindt zich 15 meter boven punt D. Ga na met welke snelheid punt G bereikt wordt. Verwaarloos de wrijvingskracht.

    (bron: examen VWO 1990-2)

 

§3     Chemische energie

In de eerste paragraaf hebben we het gehad over chemische energie. Dit is de energie die is opgeslagen in de bindingen tussen atomen. Een bekend voorbeeld is de energie in brandstoffen zoals benzine. In deze paragraaf gaan we met deze energie leren rekenen. Ook gaan we het kort hebben over energiecentrales.

In verbrandingsmotoren wordt de chemische energie in brandstof gebruikt om arbeid (W) te verrichten (over dit begrip leren we meer in de 5de klas). Deze arbeid kan dan bijvoorbeeld gebruikt worden om een auto in beweging te brengen (in dat geval zorgt de arbeid voor een omzetting van chemische energie naar kinetische energie) of je gebruikt een motor bijvoorbeeld om iets op te tillen (in dat geval wordt de chemische energie omgezet in zwaarte-energie). Niet alle chemische energie in de motor zal echter nuttig gebruikt worden. Er gaat namelijk ook veel energie verloren in de vorm van warmte (Q). Er geldt dus:

$$ E_{ch} = W + Q $$

De fractie van de energie die nuttig gebruikt wordt noemen we het rendement:

$$ \frac{E_{nuttig}}{E_{totaal}} = \eta $$

Nuttige energie (Enuttig)

joule (J)

Totale energie (Etotaal)

joule (J)

Rendement (η)

-

 

Het rendement is in deze formule een getal tussen de 0 en de 1. Het rendement wordt ook vaak uitgedrukt als percentage. In dat geval moet het rendement uit de formule vermenigvuldigd worden met 100. Als η = 0,20, dan is het rendement dus 20%. Als η = 0,02, dan is het rendement dus 2%.

In het geval van een verbrandingsmotor kunnen we de formule herschrijven tot:

$$ \frac{W_{m}}{E_{ch}} = \eta $$

Arbeid die de motor verricht (Wmotor)

joule (J)

Chemische energie (Ech)

joule (J)

Rendement (η)

-

 

We kunnen de arbeid die de motor verricht ook uitrekenen met de volgende formule:

$$ W_{motor} = F_{motor} \; s $$

Arbeid die de motor verricht (Wmotor)

joule (J)

Motorkracht (Fmotor)

newton (N)

Afstand (s)

meter (m)

 

De chemische energie berekenen we met de stookwaarde (rV). De stookwaarde vertelt ons hoeveel joule aan chemische energie er in een kubieke meter van een bepaalde brandstof zit. Benzine heeft bijvoorbeeld een stookwaarde van 33 × 109 J/m3. Dit betekent dus dat je uit een kubieke meter benzine 33 × 109 joule aan chemische energie kan halen. Voor een heel aantal brandstoffen kan je de stookwaarde in BINAS opzoeken. Met de stookwaarde kunnen we als volgt de hoeveelheid chemische energie berekenen:

$$ E_{ch} = r_v V$$

Chemische energie (Ech)

joule (J)

Stookwaarde (rv)

joule per kubieke meter (J/m3)

Volume (V)

kubieke meter (m3)

 

Ook in voedsel zit energie. Voor pinda's is de stookwaarde bijvoorbeeld ongeveer de 24 × 106 J/kg. Een enkele pinda kan je hier bijna twee minuten op laten branden (zie het onderstaande filmpje)!

         EXPERIMENT
Ook in voedsel zit chemische energie. Voor pinda's is de verbrandingswarmte bijvoorbeeld ongeveer de 24 000 J/g. Een enkele pinda kan je hier bijna twee minuten op laten branden! Dit is te zien in het rechter filmpje.
DEMO-VIDEO:
Stookwaarde van een pinda

         Voorbeeld

 

Opdracht:

Een verbrandingsmotor levert 10 × 107 J aan nuttige energie en heeft een rendement van 30%. Bereken hoeveel liter benzine hiervoor moet worden verbrand.

Antwoord:

Laten we eerst de gegevens opschrijven:
Wm = 10 × 107 J
η = 30 / 100 = 0,30

In BINAS vinden we:
rbenzine = 33 × 109 J/m3

Dan gebruiken we de formule voor het rendement:

$$ \frac{W_m}{E_{ch}} = \eta $$

Hiermee berekenen we de chemische energie:

$$ E_{ch} = \frac{W_m}{\eta} = \frac{10 \times 10^7}{0,30} = 3,3 \times 10^{8} \text{ J} $$

Met de chemische energie berekenen we het volume:

$$ V = \frac{E_{ch}}{r_V} = \frac{3,3 \times 10^{8} }{33\times 10^9} = 0,010 \text{ m}^3 = 10 \text{ L}$$

Er is dus 10 L benzine verbrand.

 

Veel van de energie die we in huishoudens gebruiken komt van energiecentrales. In de volgende afbeelding zien we een traditionele fossiele brandstofcentrale. In de centrale die is afgebeeld wordt het (behoorlijk vervuilende) steenkool als brandstof gebruikt, maar hetzelfde systeem kan ook gebruikt worden voor andere fossiele brandstoffen zoals aardgas. De steenkool wordt uit een mijn gehaald en verbrand in een oven, Met de warmte die hierbij vrijkomt, wordt water aan de kook gebracht. De stoom die hierbij ontstaat, zorgt dat een turbine gaat draaien. De turbine zorgt op zijn beurt voor het draaien van spoelen in een generator. Door spoelen te laten bewegen in de buurt van magneten, wordt hiermee elektriciteit opgewekt.

Een soortgelijk systeem gebruiken we voor het opwekken van elektrische energie uit schonere energiebronnen. Denk bijvoorbeeld aan een waterkrachtcentrale, een windmolen, en een kerncentrale. Bij een windmolen wordt de turbine aangedreven door wind en bij een waterkrachtcentrale met behulp van water. Bij een kerncentrale wordt energie opgewekt door het splijten van zware atoomkernen zoals uranium. De warmte die bij een kernreactor vrijkomt, wordt net als bij de kolencentrale gebruikt om water aan de kook te brengen en zo met de ontstane stoom een turbine te laten draaien.


(Afbeelding: Tennessee Valley Authority; PD)

Hieronder zien we het energie-stroomdiagram behorende bij een fossiele brandstofcentrale. De energiebron is hier de chemische energie in de fossiele brandstof, de turbine zet dit om in kinetische energie en de generator zet deze energie weer om in elektrische energie. Bij beide omzettingen komt ook warmte (Q) vrij. Dit gaat verloren.

Hieronder zien we het energie-stroomdiagram van windenergie. Bij windenergie wordt kinetische energie van lucht met een generator omgezet in elektriciteit en warmte:

Tegenwoordig worden veel huishoudens ook van energie voorzien met behulp van zonnecellen. Zonnecellen bestaan uit zogenaamde halfgeleiders die als eigenschap hebben dat ze elektriciteit genereren als er licht op valt. Hieronder zien we het bijbehorende energie-stroomdiagram:

INSTRUCTIE:
Chemische energie

         Leerdoelen:
  • Zorg dat je kan rekenen met het rendement met behulp van de formule "η = Enuttig/Etot". Zorg ook dat je weet dat bij een verbrandingsmotor de formule te schrijven is als "η = Wm/Ech".
  • Zorg dat je kan rekenen met de formule "Wm = Fms" en "Ech = rvV", waarbij "rv" de stookwaarde van een brandstof is in J/m3. Je kan de stookwaarde voor een aantal brandstoffen vinden in BINAS (of de tabel achter in het boek).
  • Zorg dat je energiestroomdiagrammen kan aflezen en ontwerpen van energieomzettingen in o.a. fossiele brandstofcentrales, waterkrachtcentrales, windmolens, kerncentrales en zonnecellen.
  • Zorg dat je weet dat in energiecentrales een turbine in beweging wordt gezet. Hiermee worden spoelen in een generator in beweging gezet. Door de aanwezigheid van magneten wordt in de spoelen elektriciteit opgewekt.

         Opdrachten
  1. (1p) Beschrijf de energieomzetting van de verbranding van benzine in de motor van een auto.
  2. (4p) Een tractor verbrandt tijdens een rit 250 mL aan benzine. Bereken hoeveel chemische energie de tractor verbruikt heeft.
  3. (4p) Een automotor verbruikt 3,0 × 104 J aan nuttige energie. De auto heeft een rendement van 40%. Bereken hoeveel milliliter benzine de auto verbrandt.
  4. In een dieselmotor met een rendement van 33% wordt 0,50 L gasolie verbrand.
    1. (5p) Laat met een berekening zien dat de motor 6,0 × 106 J aan energie nuttig besteed heeft.
    2. (2p) De motorkracht van de auto is 2,8 × 103 N. Bereken de afstand die de auto hiermee kan afleggen.
  5. (6p) Een auto met een rendement van 45% verbrandt 1,5 L benzine in 15 kilometer. Bereken de motorkracht van de auto.
  6. (1p) Beschrijf de energieomzetting die plaatsvindt in een generator.
  7. (1p) Noem een voordeel en een nadeel van windenergie.
  8. (3p) Op een marineschip wordt elektriciteit opgewekt met een dieselmotor. Deze motor verbrandt stookolie en zet hiermee een generator in beweging, die elektriciteit produceert. In de onderstaande afbeelding zijn deze twee processen met pijlen op schaal weergegeven.

    Noteer bij elke pijl de juiste energie. Kies uit kinetische energie, chemische energie, elektrische energie en warmte. Sommige soorten energie kunnen meerdere keren voorkomen.
    (bron: examen 2019-1 HAVO)

BINAS:
28B Stookwaarden