In dit hoofdstuk gaan we elektriciteit bestuderen. We beginnen deze paragraaf met een beschrijving van wat elektriciteit is. Ook gaan we werken met elektrische schakelingen.
Alle materie in het universum bestaat uit bolvormige deeltjes die we atomen noemen. Atomen bestaan op hun beurt uit nog kleinere deeltjes. In de atoomkern bevinden zich deeltjes met een positieve lading genaamd protonen. Deze protonen zijn relatief zwaar en zitten stevig vast in de atoomkern. Om de atoomkern heen bewegen een aantal deeltjes met een negatieve lading genaamd elektronen. Deze deeltjes zijn relatief licht en bewegen met enorme snelheid om de atoomkern. Het zijn deze negatieve ladingen die zorgen voor elektriciteit.
De positieve en de negatieve ladingen hebben de bijzondere eigenschap dat ze elkaar aantrekken. Daarnaast is het zo dat ladingen van dezelfde soort elkaar afstoten. Deze effecten zien we bijvoorbeeld als we een ballon tegen een trui wrijven. Door de wrijvingskracht komen elektronen van atomen uit de trui op de ballon te zitten. Als we de negatief geladen ballon dan bij een straaltje water houden, dan begint het water af te buigen (zie de linker onderstaande afbeelding). Dit komt doordat de positieve ladingen in het water en de negatieve ladingen in de ballon elkaar aantrekken. Op dezelfde manier kunnen we een ballon aan het plafond laten 'plakken' (zie de rechter afbeelding). We noemen deze fenomenen statische elektriciteit.
Als een voorwerp een groot overschot aan positieve ladingen heeft en een ander voorwerp een groot overschot aan negatieve ladingen, dan kan de aantrekkingskracht tussen deze ladingen zo groot worden dat de negatieve ladingen overspringen naar de positieve ladingen. We zien dan een 'vonk' overspringen (zie de onderstaande afbeelding). Het zijn meestal de negatieve elektronen die de sprong maken en niet de veel zwaardere positieve protonen.
In de natuur komen we deze effecten op grotere schaal tegen. Door bepaalde processen in wolken kan de onderkant van een wolk negatief worden en de bovenkant positief. De negatieve ladingen aan de onderkant van de wolk duwen de negatieve ladingen in de aarde weg en trekken de positieve ladingen in de aarde naar zich toe. Als het ladingsverschil groot genoeg wordt, dan ontstaat bliksem (zie de onderstaande afbeelding).
Als we elektriciteit willen opwekken, dan hebben we in ieder geval een spanningsbron nodig. Een spanningsbron is een voorwerp waarvan één onderdeel een overschot aan negatieve ladingen bevat (de minpool) en een ander onderdeel een overschot aan positieve ladingen bevat (de pluspool). Voorbeelden van spanningsbronnen zijn de batterij, het stopcontact en de dynamo.
Als we de twee polen met elkaar verbinden, dan spreken we van een gesloten stroomkring. Als gevolg daarvan gaan de negatieve ladingen naar de pluspool stromen. Het bewegen van deze ladingen noemen we elektriciteit.
Het zijn alleen de negatieve elektronen die door de elektriciteitsdraden stromen van de min naar de plus. De positieve ladingen zitten immers goed vast in de atoomkernen. Toch zeggen we (helaas) dat de stroom van plus naar min stroomt. In werkelijkheid bewegen de elektronen dus precies de andere kant op! Deze onhandigheid stamt nog uit de tijd voordat de elektronen ontdekt waren.
In de onderstaande afbeelding is aan de stroomkring ook een gloeilamp en een schakelaar toegevoegd. Een schakelaar is niet meer dan een klepje waarmee de stroomkring geopend en gesloten kan worden. Alleen als de schakelaar gesloten is gaan de ladingen van de min- naar de pluspool stromen. Aan de rechterkant zien we ook een schematische weergave van deze schakeling. Zoals je ziet gebruiken we voor de lamp een cirkel met een kruis erin en voor de spanningsbron een korte en een lange streep (de lange streep is de pluspool).
Als de ladingen door de schakeling stromen, dan botsen ze voortdurend tegen de atomen waaruit de schakeling bestaat (zie de onderstaande afbeelding). In de gloeidraad van een gloeilamp leveren deze botsingen genoeg energie om de draad zo warm te maken dat deze gaat gloeien.
Als we meerdere lampjes op een spanningsbron aansluiten, dan kunnen we dat op verschillende manieren doen. Links zien we de zogenaamde serieschakeling. In een serieschakeling zijn alle lampjes in dezelfde stroomkring opgenomen. Als we in deze schakeling één lampje losdraaien, dan wordt deze stroomkring verbroken en gaan alle lampjes uit. Rechts zien we de zogenaamde parallelschakeling. In een parallelschakeling heeft elk lampje zijn eigen stroomkring. Als we in deze schakeling één lampje losdraaien, dan wordt slechts één van de stroomkringen verbroken. De andere lampjes blijven in dit geval gewoon branden. Als er een schakeling wordt gebouwd uit meerdere lampjes en het is niet serie en niet parallel, dan noemen we dit een gemengde schakeling.
De moeilijkheid waarmee een materiaal ladingen doorlaat noemen we de weerstand. Materialen met een kleine weerstand noemen we geleiders. De bekendste groep geleiders zijn de metalen. We gebruiken geleiders bijvoorbeeld voor de bedrading in schakelingen, zodat ladingen hier gemakkelijk doorheen stromen. Materialen met een grote weerstand noemen we isolatoren. Een veelvoorkomende isolator is plastic. Elektriciteitsdraden zijn meestal omhult met een laagje plastic. Dit zorgt er o.a. voor dat er geen kortsluiting kan ontstaan tussen verschillende draden.
Het rechthoekige symbool in de onderstaande linker afbeelding wordt een (vaste) weerstand genoemd. Een vaste weerstand wordt gebruikt om de stroom door een draad te beperken . Een weerstand wordt bijvoorbeeld gebruikt als een lampje weinig stroom nodig heeft om te branden. Naast een vaste weerstand bestaat ook de zogenaamde variabele weerstand. De waarde van deze weerstand is handmatig in te stellen. Dit onderdeel wordt bijvoorbeeld gebruikt om een lamp handmatig te dimmen (zie de rechter afbeelding).
Een ander veelvoorkomend onderdeel is de NTC. De NTC is een weerstand waarvan de waarde afhangt van de temperatuur. Hoe hoger de temperatuur, hoe lager de weerstand. Een gerelateerd onderdeel is de PTC. Hier geldt: hoe hoger de temperatuur, hoe hoger de weerstand. Deze componenten worden gebruikt als temperatuursensoren.
Een ander onderdeel is de LDR. Dit is een weerstand waarvan de waarde afhangt van de lichtintensiteit die erop valt. Deze component kan bijvoorbeeld gebruikt worden als lichtsensor.
Als laatste onderdeel noemen we de diode. Een diode is een onderdeel dat stroom alleen in één richting door laat. Het symbool voor een diode is hieronder weergegeven. Aannemende dat de stroom van de plus naar de min stroomt, kan de stroom in de onderstaande afbeelding alleen van links naar rechts stromen (de elektronen stromen eigenlijk van rechts naar links). Een lichtgevende diode wordt ook wel een LED genoemd.